
Corel SCRIPT Editor commands and functions
AddLineAfter command/function
AddLineBefore command/function
CheckSyntax command
DeleteLine command/function
Execute command
FileClose command/function
FileNew command
FileOpen command/function
FileSave command/function
FileSaveAs command/function
GetColumnNumber function
GetLineNumber function
GetLineText function
GoToColumn command/function
GoToEndOfDoc command/function
GoToLine command/function
MakeCSB command/function
MakeDLL command/function
MakeEXE command/function
MoveLineDown command/function
MoveLineUp command/function
ReplaceLine command/function
Run command
SetVisible command

.FileClose (Corel SCRIPT Editor)
Command: .FileClose
Function: ReturnValue = .FileClose ()

Description
Closes the active script.

Return Value
The .FileClose function returns one of the following values:
· TRUE (-1) the active script was closed

· FALSE (0) the active script was not closed

Notes
· The .FileClose command must be preceded by a .FileNew or .FileOpen command or else an error occurs. The

error occurs because the .FileClose command cannot close the script which is executing the command.
· If you do not precede the .FileClose command by either the .FileSave or .FileSaveAs command, you will lose

the changes to the script.
· The .FileClose command corresponds to the Close command in the File menu in the Corel SCRIPT Editor. Click

File, Close.

Example
The following example opens the Graphics.CSC script , executes it, and closes it:
.FileOpen "C:\MyScripts\Graphics.CSC"
.Execute
.FileClose
{button ,AL(`cse_file_cse;;;;;',0,"Defaultoverview",)} Related Topics

.FileNew (Corel SCRIPT Editor)

.FileNew

Description
Creates a new Corel SCRIPT script. The new script becomes the active script and the insertion point is placed at
the beginning of the first line.

Note
· The .FileNew command corresponds to the New command in the File menu in the Corel SCRIPT Editor. Click

File, New.

Example
The following example creates a new Corel SCRIPT script:
.FileNew
{button ,AL(`cse_file_cse;;;;;',0,"Defaultoverview",)} Related Topics

.FileOpen (Corel SCRIPT Editor)
Command: .FileOpen FileName
Function: ReturnValue = .FileOpen (FileName)

Description
Opens a saved Corel SCRIPT script. The opened script becomes the active script and the insertion point is placed
at the beginning of the first line.

Return Value
The .FileOpen function returns one of the following values:
· TRUE (-1) the active script was opened

· FALSE (0) the active script was not opened
Parameter Description
FileName String expression that specifies the name and path of the script to open.

Note
· The .FileOpen command corresponds to the Open command in the File menu in the Corel SCRIPT Editor. Click

File, Open.

Example
The following example opens the Graphics.CSC script, executes it, and closes it.
.FileOpen "C:\MyScripts\Graphics.CSC"
.Execute
.FileClose
You can also specify the first line as follows:
ReturnValue = .FileOpen ("C:\MyScripts\Graphics.CSC")
{button ,AL(`cse_file_cse;;;;;',0,"Defaultoverview",)} Related Topics

.FileSave (Corel SCRIPT Editor)
Command: .FileSave
Function: ReturnValue = .FileSave ()

Description
Saves the active script using its current name and location.

Return Value
The .FileSave function returns one of the following values:
· TRUE (-1) the active script was saved

· FALSE (0) the active script was not saved

Note
· The .FileSave command corresponds to the Save command in the File menu in the Corel SCRIPT Editor. Click

File, Save.
· If the script is not named, the Save As dialog box opens.
· If the .FileSave command is not preceded by a .FileNew or .FileOpen command, Corel SCRIPT tries to save the

script that is executing the command.

Example
The following example saves the active script:
.FileSave
You can also specify the line as follows:
ReturnValue = .FileSave ()
{button ,AL(`cse_file_cse;;;;;',0,"Defaultoverview",)} Related Topics

.FileSaveAs (Corel SCRIPT Editor)
Command: .FileSaveAs FileName
Function: ReturnValue = . .FileSaveAs (FileName)

Description
Saves the active script under a new name or in a different location.

Return Value
The .FileSaveAs function returns one of the following values:
· TRUE (-1) the active script was saved

· FALSE (0) the active script was not saved
Parameter Description
FileName String expression that specifies the name and path to save the script under.

Note
· The .FileSaveAs command corresponds to the Save As command in the File menu in the Corel SCRIPT Editor.

Click File, Save As.

Example
The following example opens the Graphics.CSC script, saves it on the D drive, and closes it:
.FileOpen "C:\MyScripts\Graphics.CSC"
.FileSaveAs "D:\Graphics.CSC"
.FileClose
You can also specify the second line as follows:
ReturnValue = .FileSaveAs ("D:\Graphics.CSC")
{button ,AL(`cse_file_cse;;;;;',0,"Defaultoverview",)} Related Topics

.CheckSyntax (Corel SCRIPT Editor)

.CheckSyntax

Description
Checks for syntax errors in the active script. Common syntax errors include misspelling commands, missing
operators, and missing punctuation. If errors are found, error messages appear in the Compiler Output window.

Note
· The .CheckSyntax command corresponds to the Check Syntax command in the Debug menu in the Corel

SCRIPT Editor. Click Debug, Check Syntax.

Example
.CheckSyntax
{button ,AL(`cse_debug_cse;;;;;',0,"Defaultoverview",)} Related Topics

.Execute (Corel SCRIPT Editor)

.Execute

Description
Runs the active script. The .Execute command ignores all debugging information, including script breakpoints
during script execution. To debug a script, use the .Run command. Running a script in debug mode is noticeably
slower than running a script using the .Execute command.

Note
· The .Execute command corresponds to the Execute command in the Debug menu in the Corel SCRIPT Editor.

Click Debug, Execute.

Example
The following example opens the Graphics.CSC script , executes it, and closes it.
.FileOpen "C:\MyScripts\Graphics.CSC"
.Execute
.FileClose
{button ,AL(`cse_debug_cse;;;;;',0,"Defaultoverview",)} Related Topics

.Run (Corel SCRIPT Editor)

.Run

Description
Runs the active script in debug mode. Script execution stops at breakpoints, or when the end of the script is
reached. Running a script in debug mode is noticeably slower than running a script using the .Execute command.

Note
· The .Run command corresponds to the Run command in the Debug menu in the Corel SCRIPT Editor. Click

Debug, Run.

Example
The following example opens the Graphics.CSC script , runs it, and closes it.
.FileOpen "C:\MyScripts\Graphics.CSC"
.Run
.FileClose
{button ,AL(`cse_debug_cse;;;;;',0,"Defaultoverview",)} Related Topics

.AddLineAfter (Corel SCRIPT Editor)
Command: .AddLineAfter Text
Function: ReturnValue = .AddLineAfter (Text)

Description
Inserts a line and text after the line containing the insertion point.

Return Value
The .AddLineAfter function returns one of the following values:
· TRUE (-1) the line and text were added

· FALSE (0) the line and text were not added
Parameter Description
Text String expression that specifies the text to add to the inserted line.

Example
The following example adds a comment line after the line containing the insertion point:
.AddLineAfter "REM This is a comment to be added"
You can also specify the line as follows:
ReturnValue = .AddLineAfter ("REM This is a comment to be added")
{button ,AL(`cse_edit_commands;;;;;',0,"Defaultoverview",)} Related Topics

.AddLineBefore (Corel SCRIPT Editor)
Command: .AddLineBefore Text
Function: ReturnValue = .AddLineBefore (Text)

Description
Inserts a line and text before the line containing the insertion point.

Return Value
The .AddLineBefore function returns one of the following values:
· TRUE (-1) the line and text were added

· FALSE (0) the line and text were not added
Parameter Description
Text String expression that specifies the text to add to the inserted line.

Example
The following example adds a comment line before the line containing the insertion point.
.AddLineBefore "REM This is a comment to be added"
You can also specify the line as follows:
ReturnValue = .AddLineBefore ("REM This is a comment to be added")
{button ,AL(`cse_edit_commands;;;;;',0,"Defaultoverview",)} Related Topics

.DeleteLine (Corel SCRIPT Editor)
Command: .DeleteLine
Function: ReturnValue = .DeleteLine ()

Description
Deletes the line containing the insertion point. The insertion point is then placed in the line that follows the
deleted line.

Return Value
The .DeleteLine function returns one of the following values:
· TRUE (-1) the line was deleted

· FALSE (0) the line was not deleted

Example
The following example deletes the line containing the insertion point:
.DeleteLine
You can also specify the line as follows:
ReturnValue = .DeleteLine ()
{button ,AL(`cse_edit_commands;;;;;',0,"Defaultoverview",)} Related Topics

.GetLineText (Corel SCRIPT Editor)
ReturnValue$ = .GetLineText ()

Description
Returns the text from the line containing the insertion point.

Return Value
The string variable that is assigned the text in the line containing the insertion point

Example
The following example passes the text in the line containing the insertion point to the RV_Text variable. This text
is then displayed in a message box.
RV_Text$ = .GetLineText ()
MESSAGE RV_Text$
{button ,AL(`cse_edit_commands;;;;;',0,"Defaultoverview",)} Related Topics

.ReplaceLine (Corel SCRIPT Editor)
Command: .ReplaceLine Text
Function: ReturnValue = .ReplaceLine (Text)

Description
Replaces the text in the line containing the insertion point with specified text.

Return Value
The .ReplaceLine function returns one of the following values:
· TRUE (-1) the text was inserted

· FALSE (0) the text was not inserted
Parameter Description
Text String expression that specifies the text to insert in the line containing the

insertion point.

Example
The following example replaces the line containing the insertion point with a comment line.
.ReplaceLine "REM This is a comment to be added"
You can also specify the line as follows:
ReturnValue = .ReplaceLine ("REM This is a comment to be added")
{button ,AL(`cse_edit_commands;;;;;',0,"Defaultoverview",)} Related Topics

.GetColumnNumber (Corel SCRIPT Editor)
ReturnValue& = .GetColumnNumber ()

Description
Returns the column number position of the insertion point.

Return Value
The numeric variable that is assigned the column number position of the insertion point.

Example
The following example assigns the column number positions to RV_Number:
RV_Number& = .GetColumnNumber ()
{button ,AL(`cse_nav_cse;;;;;',0,"Defaultoverview",)} Related Topics

.GetLineNumber (Corel SCRIPT Editor)
ReturnValue& = .GetLineNumber ()

Description
Returns the line number of the line containing the insertion point.

Return Value
The numeric variable that is assigned the line number of the line containing the insertion point.

Example
The following example sends the insertion point to the last line in the active script. The line number is assigned
to RV_Number. The last line displays a message box indicating the number of line in the script.
.GoToEndOfDoc
RV_Number& = .GetLineNumber ()
MESSAGE RV_Number& & " are in the active script"
{button ,AL(`cse_nav_cse;;;;;',0,"Defaultoverview",)} Related Topics

.GoToColumn (Corel SCRIPT Editor)
Command: .GoToColumn ColumnNumber
Function: ReturnValue = .GoToColumn (ColumnNumber)

Description
Sends the insertion point to a specified column in the line containing the insertion point.

Return Value
The .GoToColumn function returns one of the following values:
· TRUE (-1) the insertion point was sent to the specified column

· FALSE (0) the insertion point was not sent to the specified column
Parameter Description
ColumnNumber Lets you specify the column to move the insertion point to.

Note
· If the column does not exist in the active script, the insertion point is not moved.

Example
The following example sends the insertion point to the fourteenth column in the line containing the insertion
point:
.GoToColumn 14
You can also specify the column as follows:
ReturnValue = .GoToColumn (14)
{button ,AL(`cse_nav_cse;;;;;',0,"Defaultoverview",)} Related Topics

.GoToEndOfDoc (Corel SCRIPT Editor)
Command: .GoToEndOfDoc
Function: ReturnValue = .GoToEndOfDoc ()

Description
Sends the insertion point to the beginning of the last line in the active script.

Return Value
The .GoToEndOfDoc function returns one of the following variables:
· TRUE (-1) the insertion point was sent to the last line

· FALSE (0) the insertion point was not sent t the last line

Example
The following example sends the insertion point to the last line in the active script. The line number is assigned
to RV_Number. The last line displays a message box indicating the number of the line in the script.
.GoToEndOfDoc
RV_Number& = .GetLineNumber ()
MESSAGE RV_Number& & " are in the active script"
You can also specify the first line as follows:
ReturnValue = .GoToEndOfDoc ()
{button ,AL(`cse_nav_cse;;;;;',0,"Defaultoverview",)} Related Topics

.GoToLine (Corel SCRIPT Editor)
Command: .GoToLine LineNumber
Function: ReturnValue = .GoToLine (LineNumber)

Description
Sends the insertion point to the beginning of a specified line.

Return Value
The .GoToLine function returns one of the following variables:
· TRUE (-1) the insertion point was sent to the specified line

· FALSE (0) the insertion point was not sent to the specified line
Parameter Description
LineNumber Lets you specify the line to move the insertion point to in the active script.

Notes
· The .GoToLine command corresponds to the Go To dialog box. Click Search, Go To Line.
· If the line does not exist in the active script, the insertion point is not moved.

Example
The following example sends the insertion point to the fourteenth line in the active script.
.GoToLine 14
You can also specify the line as follows:
ReturnValue = .GoToLine (14)
{button ,AL(`cse_nav_cse;;;;;',0,"Defaultoverview",)} Related Topics

.MoveLineDown (Corel SCRIPT Editor)
Command: .MoveLineDown
Function: ReturnValue = .MoveLineDown ()

Description
Moves the insertion point to the line after the line containing the insertion point. The insertion point is placed at
the beginning of the line.

Return Value
The .MoveLineDown function returns one of the following values:
· TRUE (-1) the insertion point was moved

· FALSE (0) the insertion point was not moved

Notes
· The insertion point is not moved if it is in the first line of the script.

Example
The following example moves the insertion point down one line in a script:
.MoveLineDown
You can also specify the line as follows:
ReturnValue = .MoveLineDown ()
{button ,AL(`cse_nav_cse;;;;;',0,"Defaultoverview",)} Related Topics

.MoveLineUp (Corel SCRIPT Editor)
Command: .MoveLineUp
Function: ReturnValue = .MoveLineUp ()

Description
Moves the insertion point to the line before the line containing the insertion point. The insertion point is placed at
the beginning of the line.

Return Value
The .MoveLineUp function returns one of the following values:
· TRUE (-1) the insertion point was moved

· FALSE (0) the insertion point was not moved

Note
· The insertion point is not moved if it is in the first line of the script.

Example
The following example moves the insertion point up one line in a script:
.MoveLineUp
You can also specify the line can also be specified as follows:
ReturnValue = .MoveLineUp ()
{button ,AL(`cse_nav_cse;;;;;',0,"Defaultoverview",)} Related Topics

.MakeCAO (Corel SCRIPT Editor)
Command: .MakeCAO CAOName
Function: ReturnValue = .MakeCAO (CAOName)

Description
Creates a Corel Add-on file.

Return Value
The .MakeCAO function returns one of the following values:
· TRUE (-1) the CAO was created

· FALSE (0) the CAO was not created
Parameter Description
CAOName String expression that specifies the CAO name and path. If the CAO already exists,

it will be overwritten. If the path is not specified, the CAO is saved in the active
folder. You should provide a CAO extension with the CAO name.

Note
· The .MakeCAO command corresponds to the Make Corel Add-on dialog box in the Corel SCRIPT Editor. Click

File, Make CAO.

Example
The following example creates a CAO named TOOLS:
.MakeCAO "C:\Myfiles\tools.CAO"
You can also specify the line as follows:
ReturnValue = .MakeCAO ("C:\Myfiles\tools.CAO")
{button ,AL(`;cse_make;;;;;',0,"Defaultoverview",)} Related Topics

.MakeCSB (Corel SCRIPT Editor)
Command: .MakeCSB CSBName
Function: ReturnValue = .MakeCSB (CSBName)

Description
Creates a Corel SCRIPT Binary file. A Binary file is a compiled version of a script file.

Return Value
The .MakeCSB function returns one of the following values:
· TRUE (-1) the CSB was created

· FALSE (0) the CSB was not created
Parameter Description
CSBName String expression that specifies the CSB name and path. If the CSB already exists,

it will be overwritten. If the path is not specified, the CSB is saved in the active
folder. You should provide a CSB extension with the CSB name.

Note
· The .MakeCSB command corresponds to the Make Corel SCRIPT Binary dialog box in the Corel SCRIPT Editor.

Click File, Make CSB.

Example
The following example creates a CSB named PRINTERS:
.MakeCSB "C:\Myfiles\printers.CSB"
You can also specify the line as follows:
ReturnValue = .MakeCSB ("C:\Myfiles\printers.CSB")
{button ,AL(`;cse_make;;;;;',0,"Defaultoverview",)} Related Topics

.MakeDLL (Corel SCRIPT Editor)
Command: .MakeDLL DLLName
Function: ReturnValue = .MakeDLL (DLLName)

Description
Creates a dynamic link library (DLL) from the active script. DLLs contain a library of functions that can be loaded
by Corel SCRIPT or other applications at run time.

Return Value
The .MakeDLL function returns one of the following values:
· TRUE (-1) the DLL was created

· FALSE (0) the DLL was not created
Parameter Description
DLLName String expression that specifies the DLL name and path. If the DLL already exists,

it will be overwritten. If the path is not specified, the DLL is saved in the active
folder. You should provide a DLL extension with the DLL name.

Note
· The .MakeDLL command corresponds to the Make DLL File dialog box in the Corel SCRIPT Editor. Click File,

Make DLL.

Example
The following example creates a DLL named FINANCE:
.MakeDLL "C:\Myfiles\finance.DLL"
You can also specify the line as follows:
ReturnValue = .MakeDLL ("C:\Myfiles\finance.DLL")
{button ,AL(`;cse_make;;;;;',0,"Defaultoverview",)} Related Topics

.MakeEXE (Corel SCRIPT Editor)
Command: .MakeEXE EXEName
Function: ReturnValue = .MakeEXE (EXEName)

Description
Creates a Corel SCRIPT executable from the active script. An executable is an application that runs without
opening or starting the Corel SCRIPT Editor, or any other Corel application.

Return Value
The .MakeEXE function returns one of the following values:
· TRUE (-1) the executable was created

· FALSE (0) the executable was not created
Parameter Description
EXEName String expression that specifies the executable name and path. If the executable

already exists, it will be overwritten. If the path is not specified, the executable is
saved in the active folder. You should provide an EXE extension with the
executable name.

Note
· The .MakeEXE command corresponds to the Make Corel SCRIPT Executable File dialog box in the Corel SCRIPT

Editor. Click File, Make EXE.

Example
The following example creates an executable named CALENDAR.
.MakeEXE "C:\Myfiles\Calendar.EXE"
You can also specify the line as follows:
ReturnValue = .MakeEXE ("C:\Myfiles\Calendar.EXE")
{button ,AL(`;cse_make;;;;;',0,"Defaultoverview",)} Related Topics

.SetVisible (Corel SCRIPT Editor)

.SetVisible Show

Description
Makes the Corel SCRIPT Editor application visible or hidden on your Windows desktop. When the Editor is hidden,
it runs in the Windows background and is not visible on screen.
Parameter Description
Show Numeric expression that specifies whether Corel SCRIPT Editor is visible or hidden.

Set to TRUE (-1) to show the Editor; otherwise set to FALSE (0).

Notes
· In Windows 95, pressing CTRL+ALT+DEL opens the Close Program dialog box which indicates active

applications, both visible and invisible. From Windows NT, pressing CTRL+ALT+DEL opens the Windows NT
Security dialog box. Click Task list to see a listing of active applications, both visible and invisible.

· See Executing application commands in the background for more information.

Example
The following example displays the Corel SCRIPT Editor:
.SetVisible -1
{button ,AL(`;cse_make;;;;;',0,"Defaultoverview",)} Related Topics

String Expression
A string expression is a combination of literals, string
variables, string constants, and string operators that return a
string.

Numeric Expression
A numeric expression is a combination of numbers,
variables, constants, functions, and operators that return a
number.

